Categories
54cuatro

Benchmark Comparativo: Snowflake vs Redshift vs BigQuery

Introducción

En el mundo de la analítica de datos, elegir la plataforma de almacenamiento y procesamiento correcta es crucial para el éxito de cualquier proyecto. Con una variedad de opciones disponibles, Snowflake, Redshift y BigQuery se destacan como líderes en el espacio de almacenamiento de datos en la nube. Este documento compara estas tres plataformas para ayudar a entender sus diferencias, fortalezas y cómo se comparan en varios aspectos clave.

Snowflake

Snowflake ofrece una solución de almacenamiento de datos en la nube que separa el almacenamiento del cálculo, permitiendo una escalabilidad y eficiencia sin precedentes. Su arquitectura única basada en el almacenamiento de objetos y el procesamiento paralelo masivo (MPP) permite a #Snowflake manejar grandes volúmenes de datos con rapidez. Otras características destacadas incluyen el soporte para datos semiestructurados, la capacidad de realizar viajes en el tiempo en los datos y la clonación de datos sin la necesidad de duplicar los datos físicamente.Una imagen que ilustre la arquitectura de Snowflake, mostrando claramente la separación del almacenamiento y el cálculo. La imagen debe incluir nubes que representen el almacenamiento en la nube, junto con distintos módulos para el procesamiento de datos y análisis. Debe verse moderna y tecnológica, adecuada para una audiencia profesional en el campo de la tecnología de la información.

Fortalezas

  • Separación del almacenamiento y cómputo para una escalabilidad eficaz.
  • Soporte integrado para datos semiestructurados.
  • Funciones de viaje en el tiempo y clonación de datos.

Redshift

Redshift de Amazon es un almacén de datos en la nube que utiliza una arquitectura de procesamiento paralelo masivo para proporcionar un rendimiento rápido en operaciones de petabytes de datos. Construido sobre la base de #PostgreSQL, #Redshift ha optimizado varios aspectos de su sistema para el procesamiento analítico, incluyendo una arquitectura de almacenamiento en columnas y técnicas avanzadas de compresión de datos.

Fortalezas:

  • Rendimiento optimizado para grandes volúmenes de datos.
  • Integración profunda con el ecosistema de #AWS.
  • Funcionalidades avanzadas de optimización de consultas y gestión del rendimiento.

BigQuery
BigQuery, la solución de Google, es un almacén de datos sin servidor y totalmente gestionado que permite el análisis de grandes conjuntos de datos. Su capacidad de ejecución de consultas en tiempo real y su arquitectura sin servidor hacen de #BigQuery una opción poderosa para el análisis de datos a gran escala. BigQuery también soporta el análisis de datos semiestructurados y ofrece una integración fluida con herramientas de aprendizaje automático.

Fortalezas:

  • Arquitectura sin servidor para una gestión mínima.
  • Ejecución de consultas en tiempo real a gran escala.
  • Integración con herramientas de aprendizaje automático de Google.

Comparativa

Característica Snowflake Redshift BigQuery
Arquitectura Separación de almacenamiento y cómputo Procesamiento paralelo masivo Sin servidor
Datos Semiestructurados Soporte nativo Soporte a través de Redshift Spectrum Soporte nativo
Escalabilidad Elástica, independiente para almacenamiento y cómputo Basada en nodos, escala junto con almacenamiento y cómputo Automática, gestionada por Google
Modelado de Datos Viajes en el tiempo y clonación Optimización de consultas, técnicas avanzadas de compresión Integración con aprendizaje automático, análisis en tiempo real
Integración Ecosistema Amplia, con herramientas de terceros Profunda, con servicios de AWS Fuerte, con herramientas de Google y terceros

Una imagen conceptual que muestre la diversidad de plataformas de almacenamiento de datos en la nube, como Snowflake, Redshift y BigQuery. Debe representar tres plataformas distintas interconectadas, con símbolos o íconos que representen almacenamiento en la nube, análisis de datos y escalabilidad. La imagen debe ser colorida y atractiva, con un diseño moderno y tecnológico, adecuado para un artículo profesional sobre tecnología de la información.Conclusión

Elegir entre Snowflake, Redshift y BigQuery depende de las necesidades específicas del proyecto, el ecosistema de herramientas existente, y los requisitos de escalabilidad y gestión. Mientras que Snowflake ofrece flexibilidad con su separación de almacenamiento y cómputo, permitiendo a las organizaciones escalar de manera eficiente sus recursos según sea necesario, Redshift se destaca en el rendimiento y la integración profunda con el ecosistema de AWS, lo que puede ser un factor decisivo para las empresas que ya están profundamente integradas con otros servicios de AWS. Por otro lado, BigQuery ofrece una solución sin servidor que elimina la necesidad de gestionar la infraestructura subyacente, facilitando a las empresas el análisis de grandes conjuntos de datos con mínima gestión y configuración.

Cada plataforma tiene sus propias fortalezas y características únicas que las hacen adecuadas para diferentes tipos de cargas de trabajo y requisitos empresariales. La elección final debería basarse en una evaluación cuidadosa de estos factores en el contexto de los objetivos y necesidades específicos de la organización.

Categories
54cuatro

Comparando plataformas de datos en la nube: Databricks vs Snowflake

La adopción de soluciones de datos en la nube ha estado en aumento en los últimos años y dos de las principales opciones son Databricks y Snowflake. Ambas ofrecen servicios en la nube, de hecho pueden ser instaladas tanto en AWS como en Azure. Pero cada una tiene sus propias fortalezas y debilidades. En este artículo, se comparan ambas plataformas en términos de su arquitectura, capacidad de procesamiento y herramientas de análisis.

Snowflake vs Databricks — Datagrom | Data Science Consulting

Ambas plataformas son muy eficientes en el procesamiento y análisis de datos a gran escala, pero tienen diferencias significativas en cuanto a su funcionalidad y enfoque. #Databricks se enfoca en el procesamiento de datos y el análisis de datos en tiempo real, mientras que #Snowflake se centra en la gestión de datos y el almacenamiento de datos en la nube. Ambas plataformas son muy utilizadas en la industria y son una buena opción para cualquier empresa que busque procesar y analizar grandes cantidades de datos.

In Snowflake vs. Databricks Feud, the Only Conclusion Is: DataOps Needs All  the Help It Can Get

Veamos algunos puntos particulares. Empecemos con:

Arquitectura

Databricks se basa en Apache Spark y tiene una arquitectura abierta y flexible que permite a los usuarios integrar diversas fuentes de datos y herramientas de análisis. También tiene integración nativa con Microsoft Azure y Amazon Web Services (AWS).

Snowflake utiliza un enfoque basado en la nube y se centra en el almacenamiento de datos. Tiene una arquitectura de tres capas y utiliza una base de datos columnar.

Capacidad de procesamiento

Databricks tiene la capacidad de procesar grandes volúmenes de datos y realizar tareas de procesamiento en paralelo en múltiples nodos. Además, su capacidad de procesamiento se puede escalar según sea necesario para manejar grandes cargas de trabajo.

Snowflake también puede procesar grandes cantidades de datos, pero se enfoca en la velocidad y la eficiencia. Además, su arquitectura basada en la nube permite a los usuarios escalar fácilmente el procesamiento según sea necesario.

Herramientas de análisis

Databricks tiene una variedad de herramientas de análisis, incluyendo librerías de ciencia de datos y herramientas de visualización. También tiene integración con herramientas de terceros, como Tableau y Power BI.

Snowflake se centra en el almacenamiento de datos y la consulta de datos. Tiene una interfaz de usuario sencilla que permite a los usuarios consultar los datos y crear informes.

Finalizando, nos llama mucho la atención que Snowflake y Databricks, dos empresas que inicialmente tenían objetivos muy diferentes, han estado compitiendo en un mercado cada vez más convergente. Snowflake se enfocó en equipos de BI mientras que Databricks se enfocó en equipos de ciencia de datos, pero ahora ambos están expandiéndose a los dominios del otro, creando una verdadera batalla por la “Plataforma de Datos en la Nube”. La propiedad de los datos es esencial en esta competencia, y ambas empresas comenzaron con sistemas de almacenamiento cerrados. Pero, para sorpresa de muchos, Databricks sorprendió a Snowflake al abrir partes de Delta Lake, lo que provocó que Snowflake siguiera el ejemplo adoptando Apache Iceberg. En respuesta, Databricks tomó medidas drásticas y donó todo Delta Lake a la Fundación Linux con el lanzamiento de Delta Lake 2.0, dejando en claro su compromiso con un estándar abierto para el almacenamiento de datos.

Ambas plataformas ofrecen soluciones de datos en la nube y tienen sus propias fortalezas y debilidades. Databricks es ideal para usuarios que requieren una plataforma de análisis de datos altamente personalizable, mientras que Snowflake es ideal para usuarios que necesitan una plataforma de almacenamiento de datos rápida y eficiente.

Alternativas a estas plataformas

Existen varias alternativas a Snowflake y Databricks en el mercado, dependiendo de las necesidades y requisitos de la empresa. Algunas de estas alternativas incluyen:

  • Almacenes de datos en la nube: otras opciones populares incluyen Amazon #Redshift, Google #BigQuery, Microsoft Azure #Synapse Analytics y #Oracle Autonomous Data Warehouse.
  • Plataformas de análisis unificado: hay varias opciones, como Google Cloud Dataproc, Apache Flink, Apache Beam y Apache Storm.
  • Plataformas de ciencia de datos: algunas opciones incluyen Google Cloud AI Platform, Microsoft Azure Machine Learning, IBM Watson Studio y Amazon SageMaker.

Cada una de estas opciones tiene sus propias ventajas y desventajas, y la elección dependerá de los requisitos específicos de la empresa. Es importante hacer una investigación exhaustiva y evaluar las diferentes opciones antes de tomar una decisión.

Si estás buscando alternativas a Snowflake y Databricks para la gestión de tus datos en la nube, te recomendamos considerar Redshift de #AWS y Synapse de #Azure. Ambas plataformas ofrecen soluciones de almacenamiento y procesamiento de datos escalables y seguras.

AWS se destaca por su proceso constante de innovación y la incorporación de nuevas funciones y aplicaciones a su ecosistema de datos. Con Redshift, los usuarios pueden almacenar y analizar grandes cantidades de datos utilizando herramientas de análisis de datos de código abierto, como #SQL y #Python. Además, Redshift es altamente escalable y puede manejar desde pequeñas cargas de trabajo hasta grandes conjuntos de datos.

Por otro lado, Synapse de Azure se distingue por su simplicidad y robustez. La plataforma ofrece una amplia gama de herramientas integradas para el procesamiento de datos, desde la ingestión hasta el análisis. Además, la adopción de tecnología de Azure es fácil y rápida, lo que permite a los usuarios obtener resultados inmediatos.

#BigQuery es una solución de almacenamiento y análisis de datos en la nube altamente escalable y eficiente que se ha vuelto muy popular entre los usuarios de #GCP. Ofrece una variedad de características avanzadas, como la capacidad de analizar datos en tiempo real y la integración con otras herramientas de Google, como #DataStudio y #TensorFlow.

Sin embargo, a nosotros no nos resulta efectiva la calidad de su soporte técnico. En comparación con AWS y Microsoft, el soporte proporcionado por Google aún tiene mucho por mejorar.

En resumen, tanto Redshift de AWS como Synapse de Azure son excelentes alternativas a considerar si estás buscando una plataforma de gestión de datos en la nube segura, escalable y eficiente.

Categories
54cuatro

¿El ETL va camino a desaparecer?

Tremendo título marketinero, ¿no?

Por lo general, cuando los gurús pronostican este tipo de cambios tan drásticos suelen equivocarse feo, quedó demostrado durante la pandemia y el término “nueva realidad”.

Los cambios pueden ser graduales, pero rara vez un cambio viene dado por la desaparición completa de algo.

La realidad, es que el #ETL viene presentando varios cambios. Quizás el más significativo es el concepto de #ELT que viene empujado por las arquitecturas de #DataLake.

Escribimos varias notas de ETL y ELT. Pero ahora vamos a hablar del “ETLess” o Zero ETL.

#ZeroETL es un enfoque que busca reducir o eliminar la necesidad de realizar una extracción, transformación y carga (ETL) de datos en un proceso de análisis de datos. O al menos la necesidad de hacerlo de forma manual.

Por ejemplo, #Databricks y #Snowflake vienen trabajando en simplificar los procesos de Extracción, Transformación y Carga. Tanto Snowflake como Databricks tienen soluciones que se enfocan en reducir la complejidad y la necesidad de ETL tradicional.

Snowflake tiene una arquitectura de nube nativa que permite cargar y consultar datos en tiempo real, lo que reduce la necesidad de procesos de transformación y limpieza de datos complejos. También tiene funciones de preparación de datos incorporadas que permiten transformaciones en el momento de la consulta, lo que a menudo elimina la necesidad de ETL previo.

Por otro lado, Databricks cuenta con herramientas como Delta Lake y la funcionalidad de transformación de datos en tiempo real de Spark Streaming, lo que permite trabajar con datos en su estado natural, sin tener que extraerlos, transformarlos y cargarlos en un almacén de datos.

AWS es otro de los grandes impulsores del concepto de Zero ETL. El avance de la #IA hace que muchos expertos pongan las actividades manuales en la mira de la automatización. Pero la realidad es que estamos lejos de tal simplificación. cognitive data

Lo cierto es que los pipelines de datos están confluyendo hacia una mejorar canalización y transporte de la información, haciendo que las necesidades de ETL disminuyan. La práctica de la extracción, que solía ser muy costosa, se está simplificando por medio de conectores prefabricados que permiten integrar miles de plataformas con muy poca configuración de por medio. La transformación es la que sigue siendo un verdadero problema. La transformación implica la limpieza, validación, normalización, agregación y enriquecimiento de los datos para asegurarse de que sean precisos, coherentes y relevantes para su uso previsto. Pero aún la calidad de los datos sigue siendo un verdadero dolor de cabeza.

Desde tiempo atrás a hoy, se han desarrollado técnicas y creado herramientas más avanzadas para mejorar la calidad de los datos. La aparición de herramientas de integración de datos permitió la automatización de muchas tareas de limpieza y transformación de datos, lo que redujo el riesgo de errores humanos y mejoró la eficiencia.

Además, se han creado estándares de calidad de datos y se han establecido mejores prácticas para asegurar la integridad y la precisión de los datos.

Las necesidades de mayor información y el camino de las organizaciones hacia el #DataDriven, hace que la implementación de procesos de calidad de datos sea una tarea crítica para muchas organizaciones que dependen de los datos para tomar decisiones importantes.

Lo bueno es que la inteligencia artificial y el aprendizaje automático están permitiendo nuevas técnicas para mejorar la calidad de los datos, como la identificación de patrones de datos inconsistentes o la corrección automática de errores comunes; pero nace un nuevo problema de calidad relacionado con los sesgos cognitivos.

Los sesgos de datos son errores sistemáticos en la recopilación, el análisis o la interpretación de los datos que pueden generar conclusiones inexactas o incompletas. Los sesgos de datos pueden ser el resultado de diferentes factores, como la falta de representatividad de la muestra, la mala calidad de los datos, la falta de diversidad en los datos, la selección sesgada de las variables o la falta de contexto.

Los sesgos de datos pueden tener consecuencias negativas, como la toma de decisiones incorrectas o injustas, la discriminación y la creación de estereotipos. Para evitar los sesgos de datos, es importante tener en cuenta la calidad de los datos, la diversidad de la muestra, la objetividad en la selección de las variables, la transparencia en la metodología y el contexto en el que se recopilaron los datos.

Los sesgos en la data pueden ser un problema serio en cualquier etapa del proceso ETL, ya que pueden llevar a conclusiones incorrectas o discriminación en la toma de decisiones. Para abordar los sesgos de la data, es importante comprender las fuentes de sesgo, incluyendo la selección de datos, la recopilación de datos, el preprocesamiento y la interpretación de los resultados.

Es importante tener en cuenta la necesidad de tener datos no sesgados en todo el proceso ETL para garantizar que los resultados sean precisos y justos. Esto puede implicar la selección cuidadosa de datos de fuentes diversas, la revisión rigurosa de los datos para identificar y abordar cualquier sesgo, y la aplicación de técnicas estadísticas para garantizar la calidad y la integridad de los datos. Además, es esencial que se realice una revisión constante y periódica de la calidad de datos para asegurarse de que los datos sigan siendo precisos y no sesgados a lo largo del tiempo.

De manera que… ¿El ETL va camino a desaparecer?working in power bi

De nuestra parte creemos que no, ni los procesos ETL, ni los ELT, ni ETL inverso, ni nada. Ni cerca están de desaparecer. Nacerán nuevas y mejores técnicas, pero hay que seguir invirtiendo, esforzándonos y mejorando todos los procesos de Extracción, Transformación y Carga; porque para ser Data Driven se necesitan datos limpios.

Van 5 consejos para mejorar tus procesos ETL:

  1. Antes de comenzar cualquier proceso ETL, es importante analizar la fuente de datos y su calidad para determinar si se necesita limpieza o transformación previa. Si la fuente de datos es limpia y consistente, el proceso de ETL será más rápido y eficiente.
  2. Al limitar la cantidad de datos que se procesan durante el proceso ETL, se puede mejorar significativamente el tiempo de ejecución. Esto se puede lograr a través de filtros, consultas selectivas y otras técnicas que permiten seleccionar solo los datos necesarios para el análisis.
  3. El uso de herramientas y tecnologías modernas puede mejorar significativamente la eficiencia de un proceso ETL. Por ejemplo, el uso de plataformas en la nube como AWS o Azure, o herramientas de automatización como Airflow, puede reducir el tiempo y los recursos necesarios para realizar un proceso ETL.
  4. La automatización del proceso ETL puede reducir significativamente el tiempo y los recursos necesarios para completar un proceso de carga. La automatización también puede reducir la posibilidad de errores humanos y mejorar la calidad de los datos.
  5. Es importante monitorear y ajustar el proceso ETL continuamente para mejorar su eficiencia. Esto puede incluir el ajuste de parámetros de configuración, la optimización de consultas y la adición de nuevos filtros para reducir la cantidad de datos procesados.