Categories
54cuatro

Comparando plataformas de datos en la nube: Databricks vs Snowflake

La adopción de soluciones de datos en la nube ha estado en aumento en los últimos años y dos de las principales opciones son Databricks y Snowflake. Ambas ofrecen servicios en la nube, de hecho pueden ser instaladas tanto en AWS como en Azure. Pero cada una tiene sus propias fortalezas y debilidades. En este artículo, se comparan ambas plataformas en términos de su arquitectura, capacidad de procesamiento y herramientas de análisis.

Snowflake vs Databricks — Datagrom | Data Science Consulting

Ambas plataformas son muy eficientes en el procesamiento y análisis de datos a gran escala, pero tienen diferencias significativas en cuanto a su funcionalidad y enfoque. #Databricks se enfoca en el procesamiento de datos y el análisis de datos en tiempo real, mientras que #Snowflake se centra en la gestión de datos y el almacenamiento de datos en la nube. Ambas plataformas son muy utilizadas en la industria y son una buena opción para cualquier empresa que busque procesar y analizar grandes cantidades de datos.

In Snowflake vs. Databricks Feud, the Only Conclusion Is: DataOps Needs All  the Help It Can Get

Veamos algunos puntos particulares. Empecemos con:

Arquitectura

Databricks se basa en Apache Spark y tiene una arquitectura abierta y flexible que permite a los usuarios integrar diversas fuentes de datos y herramientas de análisis. También tiene integración nativa con Microsoft Azure y Amazon Web Services (AWS).

Snowflake utiliza un enfoque basado en la nube y se centra en el almacenamiento de datos. Tiene una arquitectura de tres capas y utiliza una base de datos columnar.

Capacidad de procesamiento

Databricks tiene la capacidad de procesar grandes volúmenes de datos y realizar tareas de procesamiento en paralelo en múltiples nodos. Además, su capacidad de procesamiento se puede escalar según sea necesario para manejar grandes cargas de trabajo.

Snowflake también puede procesar grandes cantidades de datos, pero se enfoca en la velocidad y la eficiencia. Además, su arquitectura basada en la nube permite a los usuarios escalar fácilmente el procesamiento según sea necesario.

Herramientas de análisis

Databricks tiene una variedad de herramientas de análisis, incluyendo librerías de ciencia de datos y herramientas de visualización. También tiene integración con herramientas de terceros, como Tableau y Power BI.

Snowflake se centra en el almacenamiento de datos y la consulta de datos. Tiene una interfaz de usuario sencilla que permite a los usuarios consultar los datos y crear informes.

Finalizando, nos llama mucho la atención que Snowflake y Databricks, dos empresas que inicialmente tenían objetivos muy diferentes, han estado compitiendo en un mercado cada vez más convergente. Snowflake se enfocó en equipos de BI mientras que Databricks se enfocó en equipos de ciencia de datos, pero ahora ambos están expandiéndose a los dominios del otro, creando una verdadera batalla por la “Plataforma de Datos en la Nube”. La propiedad de los datos es esencial en esta competencia, y ambas empresas comenzaron con sistemas de almacenamiento cerrados. Pero, para sorpresa de muchos, Databricks sorprendió a Snowflake al abrir partes de Delta Lake, lo que provocó que Snowflake siguiera el ejemplo adoptando Apache Iceberg. En respuesta, Databricks tomó medidas drásticas y donó todo Delta Lake a la Fundación Linux con el lanzamiento de Delta Lake 2.0, dejando en claro su compromiso con un estándar abierto para el almacenamiento de datos.

Ambas plataformas ofrecen soluciones de datos en la nube y tienen sus propias fortalezas y debilidades. Databricks es ideal para usuarios que requieren una plataforma de análisis de datos altamente personalizable, mientras que Snowflake es ideal para usuarios que necesitan una plataforma de almacenamiento de datos rápida y eficiente.

Alternativas a estas plataformas

Existen varias alternativas a Snowflake y Databricks en el mercado, dependiendo de las necesidades y requisitos de la empresa. Algunas de estas alternativas incluyen:

  • Almacenes de datos en la nube: otras opciones populares incluyen Amazon #Redshift, Google #BigQuery, Microsoft Azure #Synapse Analytics y #Oracle Autonomous Data Warehouse.
  • Plataformas de análisis unificado: hay varias opciones, como Google Cloud Dataproc, Apache Flink, Apache Beam y Apache Storm.
  • Plataformas de ciencia de datos: algunas opciones incluyen Google Cloud AI Platform, Microsoft Azure Machine Learning, IBM Watson Studio y Amazon SageMaker.

Cada una de estas opciones tiene sus propias ventajas y desventajas, y la elección dependerá de los requisitos específicos de la empresa. Es importante hacer una investigación exhaustiva y evaluar las diferentes opciones antes de tomar una decisión.

Si estás buscando alternativas a Snowflake y Databricks para la gestión de tus datos en la nube, te recomendamos considerar Redshift de #AWS y Synapse de #Azure. Ambas plataformas ofrecen soluciones de almacenamiento y procesamiento de datos escalables y seguras.

AWS se destaca por su proceso constante de innovación y la incorporación de nuevas funciones y aplicaciones a su ecosistema de datos. Con Redshift, los usuarios pueden almacenar y analizar grandes cantidades de datos utilizando herramientas de análisis de datos de código abierto, como #SQL y #Python. Además, Redshift es altamente escalable y puede manejar desde pequeñas cargas de trabajo hasta grandes conjuntos de datos.

Por otro lado, Synapse de Azure se distingue por su simplicidad y robustez. La plataforma ofrece una amplia gama de herramientas integradas para el procesamiento de datos, desde la ingestión hasta el análisis. Además, la adopción de tecnología de Azure es fácil y rápida, lo que permite a los usuarios obtener resultados inmediatos.

#BigQuery es una solución de almacenamiento y análisis de datos en la nube altamente escalable y eficiente que se ha vuelto muy popular entre los usuarios de #GCP. Ofrece una variedad de características avanzadas, como la capacidad de analizar datos en tiempo real y la integración con otras herramientas de Google, como #DataStudio y #TensorFlow.

Sin embargo, a nosotros no nos resulta efectiva la calidad de su soporte técnico. En comparación con AWS y Microsoft, el soporte proporcionado por Google aún tiene mucho por mejorar.

En resumen, tanto Redshift de AWS como Synapse de Azure son excelentes alternativas a considerar si estás buscando una plataforma de gestión de datos en la nube segura, escalable y eficiente.

Categories
54cuatro

Comparativa entre herramientas de ETL

ETL es un acrónimo que significa Extracción, Transformación y Carga. Es un proceso utilizado en la gestión de datos para recopilar datos de diferentes fuentes, limpiarlo y transformarlo en un formato adecuado para su análisis y utilización en un sistema de información. Luego se carga en una base de datos o sistema de almacenamiento para su uso futuro. Es una técnica comúnmente utilizada en la integración de datos.

Existen herramientas open source, comerciales e incluso serverless provistas por cloud providers.
ETL (Extraction, Transformation & Load) – La Taberna del BI

¿Que herramienta de #ETL usar?

Talend es una plataforma de integración de datos que permite la conexión, la transformación y la integración de datos entre diferentes sistemas. Utiliza una interfaz gráfica de usuario para diseñar flujos de trabajo de integración de datos, lo que facilita la creación de tareas de integración de datos para usuarios sin experiencia en programación. Además, #Talend ofrece una amplia gama de componentes preconstruidos que se pueden utilizar para conectarse a diferentes fuentes de datos, como bases Talend Data Fabric - Opiniones, precios y características - Capterra Colombia 2023de datos, aplicaciones empresariales y servicios web. Estos componentes se pueden personalizar y combinar para adaptarse a las necesidades específicas de cada proyecto.

 

______________

Pentaho Data Integration (PDI) es una herramienta de integración de datos open-source que permite la conexión, la transformación y la integración de datos entre diferentes sistemas. Utiliza una interfaz gráfica de usuario para diseñar flujos de trabajo de integración de datos, conocida como Spoon, que facilita la creación de tareas de integración de datos para usuarios sin experiencia en programación.Qué es Pentaho Data Integration (PDI) y para qué sirve?

PDI tiene una amplia gama de componentes preconstruidos, llamados transformaciones y tareas, que se pueden utilizar para conectarse a diferentes fuentes de datos, como bases de datos, aplicaciones empresariales y servicios web. Estos componentes se pueden personalizar y combinar para adaptarse a las necesidades específicas de cada proyecto. También cuenta con herramientas para la limpieza y análisis de datos, así como para la generación de informes y la creación de dashboards.

PDI se utiliza en conjunto con el resto de herramientas de la suite Pentaho, como #Pentaho Report Designer y Pentaho Analyzer, para crear soluciones completas de Business Intelligence.

______________

Apache NiFi es una plataforma de flujo de datos open-source que permite la captura, flujo, transformación y distribución de datos a través de una interfaz gráfica de usuario fácil de usar. Es una herramienta altamente escalable y escalable que se puede utilizar para automatizar y optimizar los flujos de trabajo de datos en una variedad de entornos, desde pequeñas aplicaciones hasta implementaciones de gran escala.

Tus datos se cambian de casa? Apache NiFi te ayuda con la mudanza - Future Space S.A.

NiFi utiliza una arquitectura basada en flujos para organizar y controlar los datos, lo que permite a los usuarios crear flujos de trabajo de integración de datos mediante la arrastrado y soltado de componentes preconstruidos en una interfaz gráfica de usuario. Estos componentes, conocidos como procesadores, se pueden utilizar para realizar tareas como la captura de datos, la transformación de datos, la validación de datos y la distribución de datos a diferentes destinos.

#NiFi también cuenta con características avanzadas, como la capacidad de manejar y procesar datos en tiempo real, la seguridad y el control de acceso, y la monitorización y la gestión de flujos de trabajo. También tiene una integración con otras herramientas y tecnologías de big data, como Apache #Kafka, Apache #Storm y Apache #Hadoop.

Y que hay de los serverless, los que son ejecutados en las #cloud?

Azure Data Factory (ADF) es una plataforma de integración de datos en la nube de Microsoft que permite la conexión, la transformación y la integración de datos entre diferentes sistemas. Es un servicio en la nube que se ejecuta en Microsoft Azure y se utiliza para automatizar los flujos de trabajo de integración de datos.

ADF utiliza una interfaz gráfica de usuario para diseñar flujos de trabajo de integración de datos, llamados “pipelines”, que se componen de diferentes “actividades” que representan tareas específicas, como la copia de datos, la transformación y el procesamiento. Estas actividades se pueden utilizar para conectarse a diferentes fuentes de datos, como bases de datos, aplicaciones empresariales y servicios web, y para copiar y mover datos entre estos sistemas.

ADF también cuenta con herramientas para la automatización de tareas, como la planificación de trabajos y la generación de informes, y cuenta con integración con otras herramientas y tecnologías de Microsoft Azure, como #Azure Data Lake Storage, Azure SQL Data Warehouse y #PowerBI.

Ademas, ADF tiene la capacidad de escalar automáticamente para manejar grandes volúmenes de datos y también cuenta con una variedad de opciones de seguridad y cumplimiento.

______________

AWS Glue es una plataforma de integración de datos en la nube de Amazon Web Services (AWS) que permite la conexión, la transformación y la integración de datos entre diferentes sistemas. Es un servicio en la nube que se ejecuta en AWS y se utiliza para automatizar los flujos de trabajo de integración de datos.

AWS #Glue ofrece una interfaz gráfica de usuario para diseñar flujos de trabajo de integración de datos, llamados “jobs”, que se componen de diferentes “tareas” que representan tareas específicas, como la copia de datos, la transformación y el procesamiento. Estas tareas se pueden utilizar para conectarse a diferentes fuentes de datos, como bases de datos, aplicaciones empresariales y servicios web, y para copiar y mover datos entre estos sistemas.

AWS Glue también cuenta con herramientas para la automatización de tareas, como la planificación de trabajos y la generación de informes, y cuenta con integración con otras herramientas y tecnologías de AWS, como Amazon S3, Amazon Redshift y Amazon Athena.

Ademas, AWS Glue cuenta con un catálogo de metadatos, que permite a los usuarios registrar y gestionar información sobre sus datos, como estructura, relaciones y calidad de los datos. También tiene la capacidad de escalar automáticamente para manejar grandes volúmenes de datos y cuenta con opciones de seguridad y cumplimiento. Asimismo, AWS tiene otro servicio que se llama #DataPipeline.

AWS Data Pipeline es un servicio de #Amazon Web Services (#AWS) que permite automatizar la transferencia y la transformación de datos entre diferentes sistemas de almacenamiento y procesamiento de datos. Es un servicio en la nube que se ejecuta en AWS y se utiliza para crear flujos de trabajo de integración de datos y automatizar tareas relacionadas con la gestión de datos.

Con AWS Data Pipeline, los usuarios pueden crear flujos de trabajo de integración de datos mediante la definición de “tareas” y “relaciones” entre ellas. Cada tarea representa una actividad específica, como la copia de datos desde una fuente a un destino, la ejecución de una transformación o la ejecución de un script. Las relaciones entre las tareas definen el orden en que deben ejecutarse las tareas.

AWS Data Pipeline también cuenta con herramientas para la planificación automatizada de tareas, como la programación de trabajos y la generación de informes, y cuenta con integración con otras herramientas y tecnologías de AWS, como Amazon #S3, Amazon #RDS y Amazon EMR.

Ademas, AWS Data Pipeline tiene la capacidad de escalar automáticamente para manejar grandes volúmenes de datos y cuenta con opciones de seguridad y cumplimiento. También permite a los usuarios monitorear y supervisar el progreso de los flujos de trabajo y detectar y solucionar problemas de manera eficiente.

______________

Google Cloud Dataflow es una plataforma de procesamiento de datos en la nube de #Google Cloud Platform (#GCP) que permite la ejecución de tareas de procesamiento y transformación de datos a gran escala. Es un servicio en la nube que se ejecuta en GCP y se utiliza para crear flujos de trabajo de integración de datos y automatizar tareas relacionadas con la gestión de datos.

Con Cloud #Dataflow, los usuarios pueden crear flujos de trabajo de procesamiento de datos mediante la definición de “tareas” y “relaciones” entre ellas. Cada tarea representa una actividad específica, como la lectura de datos desde una fuente, la ejecución de una transformación, la escritura de datos en un destino. Las relaciones entre las tareas definen el orden en que deben ejecutarse las tareas.

Dataflow permite a los usuarios crear flujos de trabajo utilizando un lenguaje de programación #Java o #Python, y utiliza un modelo de programación de tuberías y filtros para procesar los datos. Ademas, Dataflow es escalable y maneja de manera automática la distribución y el balanceo de carga para procesar grandes volúmenes de datos.

Dataflow también cuenta con herramientas para la planificación automatizada de tareas, como la programación de trabajos y la generación de informes, y cuenta con integración con otras herramientas y tecnologías de GCP, como #BigQuery, Cloud Storage, Cloud Pub/Sub.

Esperamos que esta nota haya sido de interés, y si tienes dudas puedes ponerte en contacto con nosotros.

[popup_anything id=”2076″]